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ABSTRACT: A logistic regression model was developed to predict ethnic group from mitochon- 
drial DNA (mtDNA) types determined by hybridization with sequence-specific oligonucleotide 
(SSO) probes of the two hypervadable segments of the mtDNA control region. The model 
was developed with, and tested against, a previously reported data set of 525 individuals from 
five ethnic groups (African-American, Southeast Asian, Caucasian, Japanese, and Mexican) 
involving 23 probes at nine regions within the two hypervariable segments [1]. The model 
correctly predicted the ethnic group of 65.3% of the overall sample; however, the success rate 
varied substantially among ethnic groups, with the most success obtained with Caucasians 
(81% correctly classified). A discriminant analysis yielded similar results. An example is given 
of using the model to predict the ethnic group of an SSO-type from a forensic case. Such models 
provide alternatives to traditional skeletal-based methods of predicting ethnicity, especially in 
cases where skeletal material is absent or incomplete. 
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Hybridization of sequence-specific oligonucleotide (SSO) probes to DNA sequences has 
become a useful technique for detecting molecular genetic variation in human populations 
[1-4]. One potential use of SSO-typing is assisting identification of samples in forensic 
cases. Typically, a sample of forensic interest is compared with the mtDNA of an individual 
thought potentially to be either the source of the mtDNA or to be maternally related to the 
source. Matching SSO mitotypes (hereafter, SSO-types, or where no confusion may result, 
simply mitotypes) are taken to be evidence for identity or matemal relatedness of the 
samples, as detailed elsewhere [1]. Such comparisons can be very informative, but only 
where a potential match for the case sample has already been identified. It is possible, 
however, to use the information in an SSO-typing to predict which ethnic group the sample 
came from; these predictions may serve as a useful first step in narrowing the pool of 
potential matches. In this paper, we examine the strengths and limitations of using logistic 

Received for publication 20 Oct. 1993; revised manuscript received 7 March and 22 April 1994; 
accepted for publication 25 April 1994. 

Postdoctoral Associate, Population Research Institute, The Pennsylvania State University, Univer- 
sity Park, Pennsylvania. 

2Assistant Professor, Department of Anthropology, The Pennsylvania State University, University 
Park, Pennsylvania. 

This work was supported by NU grant 92-IJ-CX-K040 to M.S. 

1360 

Copyright © 1994 by ASTM International



CONNOR AND STONEKING �9 ASSESSING ETHNICITY 1361 

regression models on SSO-typings of hypervariable segments of the mtDNA control region 
to predict ethnic classification. 

Analysis of the mtDNA control region has a number of advantages with regard to forensic 
cases [5]. First, mtDNA is present in high copy number. Typing mtDNA thus presents a 
greater probability of success in analyzing samples with either minute amounts of DNA, 
or in which the DNA may be highly degraded, than would typing single-copy nuclear 
genes. Second, the apparent haploid inheritance of human mtDNA simplifies the analysis 
of mixed samples. And lastly, mtDNA, and the control region in particular, show an 
extremely high level of polymorphism in humans [6-10]. 

Our strategy was to build probability models that used the binding or non-binding of 
various SSO probes to predict the ethnic classification of each sample. The probability 
models were constructed using stepwise logistic regression on the mitotypes of a sample 
of 525 individuals from five ethnic groups (Caucasians, African-Americans, Southeast 
Asians, Japanese, and Mexicans); mitotypes were defined by a series of 23 SSO probes at 
9 distinct sites within the mtDNA control region [1]. The emphasis was not on interpreting 
the interrelationships among the probes (for example, their high-order interactions), but on 
building a model that could successfully predict ethnic classification. We apply the model 
to a forensic case that was previously analyzed [1], and discuss the prospects and limitations 
of this approach. 

Methods and Materials 

The sample consisted of 525 unrelated individuals from five ethnic groups (142 Cauca- 
sians, 129 African-Americans, 74 Southeast Asians, 86 Japanese, and 94 Mexicans), 
described in more detail elsewhere [1]. MtDNA variation was previously characterized by 
hybridization with a series of 23 SSO probes at 9 distinct sites [1]; the frequency of each 
SSO variant is given in Table 1. For the purposes of this study, the data were reduced to 
a series of 23 dummy variables representing the binding or non-binding of each probe, and 
a categorical variable indicating ethnic group membership. These dummy variables were 
then used to predict the probability of membership in the various ethnic groups. Discriminant 
analysis [11] is traditionally used for this purpose, but it assumes an underlying multivariate 
normal error function, which is violated by the categorical nature of the data. We therefore 
focused on logistic regression models [12], although, for the purpose of comparison, the 
results of a matched discriminant analysis will be briefly discussed. 

The outcomes at a given site were converted into a set of binary dummy variables, where 
a '1 '  for a particular dummy indicated the binding of the particular probe, while a ' - 1 '  
indicated non-binding. For example, the results at the IA site were summarized by the 
binary dummies IA1, IA2, and IA3, with a blank at IA indicated by a - 1 for each dummy. 
This resulted in a set of 23 dummy variables; the separation of sites into dummy variables 
allowed the selection procedure to discard the least useful probes. The HA site was not 
used in the analysis because the Japanese were monomorphic for the IIA2 variant, which 
caused the logistic regression procedure to fail to converge. 

The resulting set of 21 dummy variables possesses 210 possible first order interactions, 
although the 18 within-site interactions are not meaningful. Two separate strategies were 
used to construct models involving main effects and first order interactions. The first strategy 
was to use stepwise logistic regression to build a hierarchical logistic regression model. 
The stepwise analysis was first used to produce a main effects model with the first order 
interactions being added in a subsequent round of stepwise logistic regression [12]. To 
enter the model, a variable had to have a p-value of less than 0.15; variables whose 
p-values rose past 0.20 were dropped. This procedure retained 15 dummy variables as main 
effects; in order to maintain a satisfactory number of degrees of freedom (d.f.) per parameter 
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TABLE 1--Frequencies (percent) of sequence variants at nine mtDNA SSO-defined regions for 
five populations. Data from [l]. n ~- sample size, B =- blank. 

Population African- Southeast 
n Caucasian American Asian Japanese Mexican Total 

Region Variant 142 129 74 86 94 525 

IA 1 69.7 55.8 68.9 80.2 88.3 71.2 
2 18.3 8.5 4.1 2.3 1.1 8.2 
3 8.5 17.8 22.9 17.4 9.5 14.5 
B 3.5 17.8 4.1 0.0 1.1 6.1 

I]3 1 76.0 10.1 32.4 11.6 3.2 30.1 
2 10.6 77.5 44.6 75.6 67.0 52.6 
3 1.4 4.7 13.5 5.8 22.3 8.4 
B 12.0 7.7 9.5 7.0 7.4 9.0 

IC l 74.6 58.l 58.1 81.4 83.0 70.9 
2 9.9 0.8 17.6 7.0 1.1 6.7 
3 12.7 27.1 18.9 9.3 12.7 16.5 
B 2.8 14.0 5.4 2.3 3.2 5.9 

if) 1 86.6 69.8 77.0 53.5 50.0 69.1 
2 9.9 18.6 23.0 46.5 47.9 26.7 
B 3.5 11.6 0.0 0.0 2.1 4.2 

HA 1 40.1 3.9 2.7 0.0 8.5 13.7 
2 59.9 95.3 97.3 100.0 91.5 86.1 
B 0.0 0.8 0.0 0.0 0.0 0.2 

liB 1 56.3 27.9 48.6 51.2 39.4 44.4 
2 8.5 1.6 9.5 7.0 10.6 7.0 
3 15.5 11.6 8.1 17.4 7.5 12.4 
B 19.7 58.9 33.8 24.4 42.5 36.2 

IIC 1 67.6 35.7 74.3 73.3 88.3 65.3 
2 17.6 19.4 4.0 3.5 4.3 l l .4  
3 2.8 1.5 14.9 8.1 2.1 5.0 
B 12.0 43.4 6.8 15.1 5.3 18.3 

liD 1 95.1 74.4 82.4 83.7 79.8 83.6 
2 1.4 19.4 1.4 0.0 1.1 5.5 
B 3.5 6.2 16.2 16.3 19.1 10.9 

liE 1 38.0 45.7 28.4 43.0 28.7 37.7 
2 57.8 44.1 71.6 53.5 66.0 57.2 
B 4.2 10.1 0.0 3.5 5.3 5.1 

estimated, only the first (most important) five interactions, as determined by the stepwise 
procedure, were retained in the model. 

Non-hierarchical models, in which an interaction could be included without including 
the associated main effects, are usually avoided in logistic regress ion--not  because the 
models are necessarily inappropriate, but because significant interactions in a model without 
main effects are impossible to interpret, and interpretation of  the coefficients is usually the 
goal of  modeling the data. In this case, however, the emphasis was on building a parsimonious 
description of  the data, rather than on evaluating the theoretical significance of  the coeffi- 
cients of  the model. The model coefficients have no known theoretical significance for the 
SSO data, beyond their descriptive value. The second strategy was therefore to consider 
non-hierarchical logistic regression models. 

In a non-hierarchical analysis, main effects and interactions are considered simultaneously, 
rather than sequentially; the interaction between two sites can be added to a model that 
does not include the corresponding main effects. This would require dummy variables for 
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all possible interactions. To reduce the number of first order interactions to a smaller set 
that could be feasibly included in the stepwise analysis, the 192 potentially meaningful 
interactions were first evaluated by means of the likelihood ratio statistic G 2 [13]; for 
example, to test the IAI*ID1 interaction, a full model containing both the main effects and 
the interaction was compared to a reduced model containing only the main effects in 
question. Since the G 2 for an interaction seemed likely to decline when the interaction was 
included in a more complete model that included other main effects and interactions, the 
relatively conservative C~ cut-off for inclusion was set at 14, with a p-value of 0.007 for 
4 d.f. The cut-off was selected by inspection of the results to provide a reasonable number 
of probably significant interactions for testing. In point of fact, no interaction with a C~ of 
less than 16 was included in a final stepwise model. 

The preceding cut-off yielded 11 interactions for testing. Because including interactions 
involving both ID1 and ID2 in a model resulted in non-convergence of the logit model, 
two possible sets of interactions were considered: the set containing ID1 interactions, and 
the set containing ID2 interactions. Forward stepwise logistic regression was implemented 
in a Gauss program [14] that made calls to the Gauss Quantal Response application [15]; 
variables whose inclusion resulted in a chi-squared improvement with an approximate 
P-value of 0.05 were retained. The addition of variables ceased when none resulted in a 
significant improvement of the model. At that point, the program switched to stepwise 
deletion of any variables with P-values greater than 0.05. When no variables in the model 
had P-values greater than 0.05, the remaining variables constituted the final model. Although 
in theory such a procedure may not detect all important variables or interactions, in this 
instance it seemed to produce an equally effective and slightly more parsimonious model 
than the hierarchical procedure. 

Results 

Models 

The hierarchical stepwise model resulted in a C~ value of 646.20, with 80 d.f. The two 
non-hierarchical models (Model 1 and Model 2) differed only slightly, with overall C~ 
values of 612.512 (68 d.f.) and 603.16 (64 d.f.), respectively. The G 2 values of these models 
could not be simply compared, since no model was a subset of any other, but the differences 
appeared to be marginal, considering the difference in degrees of freedom. The hierarchical 
model correctly predicted the ethnic group of 63.6% of the overall sample; both non- 
hierarchical models correctly predicted the ethnicity of 65-66% of the sample. Since the 
second non-hierarchical model (Model 2) was slightly more parsimonious than the others 
and provided about as good a fit to the data, only the variables included in Model 2 were 
considered in the remainder of the analysis. 

The success of the logit model in classifying the various ethnic groups varied, as is 
shown in Table 2. The model correctly classified 81.0% of Caucasians, 73.4% of Mexicans, 
69.0% of African-Americans, 54.7% of Japanese, and only 31.1% of Southeast Asians. To 
provide some perspective on these results, a linear discriminant function was fit to the 
same variables and interactions using SYSTAT [16]; the resulting classification was very 
similar to the logit model (Table 3). The two procedures agreed in 487/525 = 92.8% of 
the cases. Despite this close agreement, they were correct in only 327 of the 487 cases, a 
success rate of 67% vs. 65% for the procedures separately. This suggests the possibility 
that the remaining 35% of the sample may be inherently difficult to classify--a possibility 
that will be explored in the subsequent discussion. 

An Example 

To give a concrete example of predicting the ethnic group of a sample from the SSO- 
typing, we re-analyze a case presented previously [1], in which the skeletal remains of a 
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TABLE 2--Classification of ethnic groups by Model 2. Each row shows the group membership 
(in percent) predicted by the model for the actual group. 

African- Southeast 
Actual Caucasian American Asian Japanese Mexican 

Caucasian 81.0 4.2 4.9 6.3 3.5 
African- 

American 10.9 69.0 2.3 6.2 11.6 
Southeast 

Asian 28.4 8.1 31.1 16.2 16.2 
Japanese 10.5 8.1 5.8 54.7 20.9 
Mexican 8.5 6.4 2.1 9.6 73.4 

TABLE 3--Classification of ethnic groups by the discrirninant function analysis. Each row shows 
the group membership (in percent) predicted by the discriminant function for the actual group. 

African- Southeast 
Actual Caucasian American Asian Japanese Mexican 

Caucasian 80.3 4.9 4.9 7.0 2.8 
African- 

American 9.3 66.7 2.3 10.1 11.6 
Southeast 

Asian 32.4 6.8 36.5 6.7 17.6 
Japanese 11.6 9.3 9.3 48.8 20.9 
Mexican 8.5 5.3 2.1 8.5 75.5 

child were typed and found to exactly match the SSO mitotype of a Caucasian mother 
whose own child had disappeared a year and a half before. The match was subsequently 
confirmed by DNA sequencing. This mitotype differed from all 142 Caucasian mitotypes 
observed in the SSO-type database. Table 4 summarizes the calculations of the log odds 
that the unknown sample belonged to the various ethnic groups, compared to the probability 
that the unknown sample was of Mexican origin. (The ethnic group chosen as the basis 
for comparison---here, Mexicans--is arbitrary; the results would be identical if log odds 
were calculated versus, say, African-Americans.) If the probability that the sample comes 
from ethnic group g is denoted "rr e, the log odds that the sample belonged to group g vs. 

/ \ 

g' equal in (--~-~, which we may denote Lg.g,. Thus, if Lg,5 denotes the log odds of group g 

vs. group 5 (Mexicans), 

av5 = Pr{Sample is of Mexican origin} = 4 

1 + ~ exp(Lg,s) 
g=l 

Probabilities ~rL through ~r4 can then be calculated via 

~g = ~s exp(Lg, s). 

The result of these calculations, shown in Table 4, is that the probability that the sample 
was of Caucasian origin is estimated to be 70.6%. 
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Discussion 
Limitations of  the Models 

The probability model employed has a number of potential limitations. The full additive 
logit model, which would include all possible probes at all nine sites, is formally equivalent 
to a log-linear model that includes first level interactions--that is, non-independence between 
ethnic group and typing site. Such a model (including the possibility of blanks) would 
involve fitting cell values to a table with 414,720 cells. Since there are only 525 observations, 
it would necessarily be a sparse table, with many sample zeros; the mean cell count would 
be only 0.00127. 

The fitted model does not require knowing the binding status of as many probes, which 
reduces the number of cells in the table to 2,592. Nevertheless, the average cell frequency 
still falls well below 5 (often suggested as a rule-of-thumb), and it is reasonable to question 
the effects of sample size on the estimated Cr ~ values. There is some evidence that C~ 
behaves conservatively when most expected frequencies are smaller than 0.5 [13,17-19]. 
It is recommended that 

N 

where n is the sample size and N is the number of cells in the table [17]. For the full table, 
F -  

n 
= 0.00127, whereas /10 = 0.0049, so this condition would not be fulfilled. For the 

N y / v  
n ~ 

fitted model, ~ = 0.2025, whereas = 0.0621, suggesting that the C_~ statistic will 

behave appropriately. In order to test the significance of the model more systematically, a 
permutation test was applied, in which the column containing ethnic classification was 
randomly permuted, and Model 2 was then fit to the permuted data. In 999 trials, the 
observed C_~ value of Model 2 of 603.16 and percentage correctly predicted of 65.33% 
were never exceeded, yielding an approximate significance level of 0.001 for each [20,21]. 

Another well-known limitation to building probability models for any particular data 
set is over-prediction: the model tends to over-adapt itself to fitting the sample, with the 
consequence that the ability of the model to make predictions is overstated. It is therefore 
essential to perform some sort of cross-validation. In order to test for allocation bias, the 
estimates for Model 2 were jackknifed: each case was removed in turn, the model parameters 
were re-estimated, probabilities of group membership for each case were recalculated, and 
the case was classified as belonging to the group for which the estimated probability of 
membership was highest. In this way, no sampled mitotype was used to estimate the model 
parameters or predict its own classification. The results were substantially the same, with 
63.2% correctly classified overall, suggesting that the allocation bias was not high. 

TABLE 4--Probabilities of group membership for the case analysis, based on Model 2. 

LOD (vs. Odds (vs. Probability of 
Group Group 5) Group 5) Group 

1 5.205 182.215 70.6% 
2 3.824 45.791 17.7% 
3 3.314 27.499 10.7% 
4 0.481 1.617 0.6% 
5 - -  - -  0.4% 
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The limited success of the logit model in classifying certain ethnic groups probably has 
several causes. The most obvious possibility is that the sequences used to design the SSO 
probes were in large part (19/52) from Caucasians [1]. Thus, despite the fact that all five 
populations showed statistically significant differences in probe frequencies at each of the 
nine sites [1], the success of the logit model in classifying Caucasians (81.0% were correctly 
classified) may suggest that predicting ethnic classification from SSO probe data would 
work better if the probes were designed using DNA sequences from each of the targeted 
ethnic groups. However, the pilot sample also included 23 Asians, so it is not at all clear 
that this is the reason the models did so well with Caucasians and so poorly with Southeast 
Asians. The fact that a number of sites did not make it into the final logit models does 
suggest that some probes could be deleted, while other probes might be added to detect 
variants unique to Southeast Asians. 

A second possible cause of the limited ability of the logit to classify some ethnic groups 
is that socially defined ethnic groupings do not exactly correspond to mitochondrial cladistic 
history; the ethnic groups include "migrants" from other lineages. This pattern of evolution- 
ary sharing of some mitotypes across ethnic groups is also observed in phylogenetic 
reconstruction of mtDNA sequences [8-10]. The logit and the discriminant function succeed 
and fail in classifying almost identical cases, and when they fail, they often fail in the same 
ways. This suggests the possibility of heterogeneity within ethnic groups. Examination of 
the logit probability estimate that a mitotype does indeed belong to its nominal ethnic 
group--that is, the estimated probability of correct classification--reveals that the distribu- 
tion of these estimates is bimodal, as illustrated in Fig. 1. The discriminant probabilities 
show the same pattern. The bimodality suggests that many of the 'misclassified' mitotypes 
may indeed belong to other mitochondrial lineages, whatever their socially defined ethnicity. 
To the extent that this is true, there may be an upper limit to the success of logistic 
probability models for predicting ethnicity from mitotypes. This may be particularly ~ue 
when the ethnic groupings are themselves not very specific, but it also suggests that there 
may be inherent limitations to the ability of mtDNA to accurately classify ethnic groups, 
especially since such classification relies on morphological traits that are not influenced 
by mtDNA. 

Finally, it was probably unfortunate that the IIA site was dropped from the analysis, 
since it clearly provides some information as to the probability of Japanese ancestry. Failure 
to include the IIA site was an artifact of using a logit model, for the following reason. At 
the IIA site, the Japanese were monomorphic for the IIA2 variant. Thus, the SSO-type 

7 0  

6 0  

50  

40 

o "  ~ 3O 
U. 

2 0  

10 

0 Od ~1" co  

Probability of Correct Classification 

FIG. 1--The distribution of the estimated probability of classifying each sampled mitotype 
into its nominal ethnic group, as calculated by Model 2. 
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database implies that a mitotype with a IIA1 variant is certain not to be Japanese; that is, 
Pr{Mitotype is Non-Japanese Binding of the IIA1 probe} = 1. But in a logit model, 

ec+bx 
Pr{Mitotype is Non-Japanese Binding of the IIA1 probe} - 1 +e  c+bx' 

where b and c are constants and X is the dummy variable representing binding or non- 
binding of the IIA1 probe. For this expression to equal one, b must ~pproach infinity, and 
the logistic regression procedure fails to converge. One way to force convergence would 
be to arbitrarily pick a Japanese mitotype and change the IIA binding status from HA1 to 
IIA2. Another would be to use discriminant analysis; in the discriminant analog to the 
univariate example presented above, the Japanese monomorphism would be represented 
by a sample variance of zero at the IIA site. But since discriminant analyses assume identical 
covariance matrices across populations, the sample variances would be pooled into a 
common estimate, and the difficulty would not be so apparent. In order to evaluate the 
effect of neglecting the IIA site, we tested a discriminant function model that included all 
main effects and all 11 of the "significant" interactions. The model correctly classified 
68.0% of the overall sample, and both Japanese (58.1%) and Southeast Asians (40:5%) 
did show some improvement in the accuracy of their classification. This suggests that 
neglecting the IIA site did lead to a modest reduction in the predictive power of the model. 

Another alternative that allows inclusion of a monomorphic site is to use metric space 
models, in which mitotypes are assigned to groups on the basis of their distance from group 
centroids, with the distance being calculated according to some metric. Various metrics 
were tried, for example, Euclidean, city block, and weighted variants of same. All of the 
metric models correctly classified 53-56% of the sample, and none was more successful 
than Model 2 at classifying any of the ethnic groups. 

Typing Strategies 

An important practical question concerns whether it is better to cover many sites with 
a few probes each or a few sites with many probes each. Considering blanks suggests that 
the former approach is superior. Two probes at one site yield three possibilities: probe 1, 
probe 2, or a blank; while two probes at two sites yield four possibilities: probe 1/probe 
2, probe 1/blank; blank/probe 2, or blank/blank. This pattern is exhibited by the contribution 
of probes to measures of diversity: Figures 2 and 3 show the pattern of declining diversity 
which occurs when probes are removed in a stepwise fashion, at each step preserving as 
much diversity as possible. The pattern in both these figures is of resisting the loss of sites: 
in Fig. 2, a site isn't completely lost until the removal of IIA1, on the fourteenth step; in 
Fig. 3, a site isn't lost until the removal of IID2, also on the fourteenth step. Since a site 
would have had to be lost by the fifteenth step, the empirical pattern comes very close to 
preserving the number of polymorphic sites for as long as is possible, suggesting that it 
may be better to spread any fixed number of probes over as many sites as possible. This 
pattern is also exhibited in the probes included in Model 2: with the exception of the IIA 
site (which was monomorphic in the Japanese and not considered in the analysis), at least 
one probe was included from every probe site. And at only one site, IB, were all the 
available probes included in the final model. 

Such considerations are counterbalanced by the problems of sparsity, discussed above, 
which probably limits the number of probe sites that can be usefully included in a logistic 
model. For example, if we limit ourselves to a single probe at each site--guaranteeing the 
maximum number of sites for a given number of probes--the Koehler and Larntz criterion 
[18] implies that 
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FIG. 2--The number of  distinct mitotypes present in the database of  525 SSO-types as probes 
were progressively removed from consideration. At each step, the probe removed was chosen 
so that the remaining number of  distinct mitotypes was maximized 

2 S < ~ ,  

where S is the number of probe sites. Thus, 

2 1 ln(10) 
S < ~ n(n) ln(2) 

When n = 525 (the size of the SSO-type database), the maximum number of sites that 
could be considered in any final model is fewer than 15. Because the limit goes up only 
as the log of the sample size, even very large sample sizes will suffer from this limitation; 
a sample size of 5000 would require the number of sites to be less than or equal to about 21. 

Comparative Performance and Future Prospects 

There have been several studies in the past that sought to predict ethnicity (as well as 
other characteristics, such as sex) from forensic samples on the basis of skeletal biology, 
typically via a discriminant function analysis of selected traits. Giles and Elliot [22] studied 
the ability of eight cranial measurements to distinguish among American whites, American 
blacks, and American Indians, with sex as a known covariate; their discriminant analysis 
correctly predicted the ethnic group of 82.6% of the males and 88.1% of the females, is~an 
(23] used discriminant function analysis on three measurements (selected via stepwise 
discriminant analysis) of the pelvis to distinguish between black and white Americans and 
had an overall success rate of 83% in males and 88% in females when age, which was 
known, was included in the analysis. Without age, the rates dropped to 79% and 83%, 
respectively. DiBennardo and Taylor [24] performed stepwise discriminaut analysis on 32 
measurements of the post-cranial skeleton to distinguish American whites and blacks; their 
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final model retained 15 of the measurements and correctly identified the ethnic group of 
95% of the sample. A thorough review of the identification of ethnicity from skeletal 
remains may be found in isqan [25]. In general, the studies reviewed were successful in 
distinguishing American whites from American blacks 80-95% of the time. 

Determining ethnicity from skeletons is therefore superior to the present mitotype analysis, 
although the correct classification of Caucasians from mitotype analysis does approach the 
success of discriminant analysis of skeletal traits. Additional SSO-probes, particularly 
designed from sequences from under-represented groups, should increase the classificatory 
power of mitotype analysis. Furthermore, skeletal discriminant analysis does suffer from 
the limitation of requiring a relatively intact skeleton, whereas mitotype analysis can be 
applied to limited or fragmented skeletal samples [I], as well as other biological material, 
including blood, teeth [26], and hair [27]. Moreover, mtDNA is a single segregating locus; 
it seems likely that analysis based on multi-locus models (which would be more comparable 
to analyzing the entire post-cranial skeleton) would be even more successful at ethnic classifi- 
cation. 

Recommetutations 

In cases where a relatively complete skeleton is available, discriminant analysis of various 
skeletal characters remains the most powerful method of predicting ethnicity. But when 
skeletal material is incomplete or absent, applying the logit model to mitotypes provides 
a reasonably accurate method of ethnic classification, particularly for Caucasians. It is 
anticipated that probes designed especially to detect the variation in other ethnic groups 
will improve the performance of the models, and designing and testing such probes is 
currently underway. In some cases it may be useful to construct models that address more 
specifically the ethnic groups of interest--for example, "Italian" instead of "Caucasian," 
or "Nigerian" instead of "African." The pattern with which probes generate diversity 
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FIG. 3--The genetic diversity, H, of  the 525 SSO-types as probes were progressively removed 
from consideration. At each step, the probe removed was chosen so that the genetic diversity 
was maximized. Genetic diversity = H = 1 - ~ X~, where Xi is the frequency of  the ith mitotype. 
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suggests that investigators should try to maximize the number of distinct sites covered, 
and statistical considerations suggest that 15-20 probes is about the maximum that can be 
meaningfully analyzed in a logit model with feasible sample sizes. This implies that if logit 
models are to be used the best strategy is to look for 15 or so sites that are polymorphic 
in all of the populations of interest. 
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